Categories
Engineering Curriculum

Benefits of an abstract engineering education

My prior post was critical of the abstraction-based, mathematics-heavy, and computation-focused eduction served up to today’s engineering students. It has been my experience has been that the most successful engineers in industrial practice are very hands-on, with years of practical experience, and insights that have little to do with academic equations. That’s not to say that the academic abstractions are unimportant, for they provide the language of discussion. An intelligent conversation about, say, a motor drive system, requires participants to understand that additional motor horsepower is not necessarily needed to produce greater output torque. (An engineer friend recently shared with me his attempt to explain this to a non-engineer boss. In the end, the boss said, “This doesn’t make any sense to me, but if you say it’s so, it must be.”)

Despite possible shortcomings in the current methods of engineering education, today’s graduates continue to be hired, and paid well-above average salaries—so employers obviously benefit from bringing on students who survive the current curriculum. Whatever modifications I might advocate for improving engineering pedagogy, I would certainly hope not to abandon these beneficial characteristics of today’s engineering programs. So what does an engineer learn from dealing with high levels of abstraction?

  • Perseverance — It often takes hours, maybe even days, to work through a single homework assignment. One has to look at each problem statement and begin trying to match the available information with potential methods of solution. Often times, roadblocks in understanding are encountered. The instructional material needs to be re-read, and re-evaluated to build a more comprehensive understanding of the solution technique. If the solution is not already known (from prior semester homework files, or found online), then a student has to at least convince themself that their path of deduction and computation is logical and rational. Shortcuts in this process are rarely rewarded in the long run, and engineering students rarely make it past their sophomore year if they haven’t acquired a healthy dose of perseverance.
  • Emotional suppression — Solving math problems is not a matter of nuance, or persuasion. It doesn’t matter how mad you get, or how optimistic you may be. Either your solution works, or it doesn’t. A successful student learns to keep cranking away at a problem until the correct solution is found, regardless of their emotional state.
  • Delayed gratification — Not withstanding the time spent working individual problems, engineers have to spend several years working on fundamentals before they can begin to solve higher-order engineering problems. Want to study photography? Grab a camera and go take some pictures. Want to be a writer? Start a blog. Want to be a civil engineer? Then expect to take four semesters of prerequisite courses to get to the point where you can begin seriously talking about bridge construction. In fact, your four years in engineering school are just a warm-up for going into industry, where you have to learn how engineering is carried out in the real world.
  • Humility — Solving complex math problems leads one to be wary of false optimism. A dropped sign, a transposed notation, a forgotten property, a misunderstood application—all can lead to an incorrect solution, even though the methodology seems correct. This aspect of the engineering education has been well-stated by Vivek Haldar:

    To be a successful software engineer (or indeed, any engineer), one first needs to be utterly and completely broken by failure. One must be so humiliated by a complex system that they give up and realize that the only chance of moving forward comes from being a supplicant to the complexity, by approaching it with humility and caution, not with hubris. You have to listen to the system, coax it into behaving. Commanding it does not work.

  • Sub-problem identification — Getting the hang of breaking complex problems into solvable sub-problems is an important engineering skill. My understanding of how this could be accomplished came in the second half of my sophomore year. No longer did I have to look for an equation or method that solved an entire problem at once; I could break the problem into smaller parts and solve the sub-problems individually. This was my first inkling that I might actually be able to “think” like an engineer.

Any other benefits to a traditional engineering education that I’ve missed?

Categories
Engineering Curriculum

A Narrower Focus

As I enjoyed lunch with a friend today, he described a teenager that he has been counseling. The young man that my friend has been advising wants to be engineer. When asked why, the teen replied that he wants “to build things.” That’s certainly why I wanted to be an engineer. It’s also why I was so frustrated in my first two years of college. I didn’t understand what possible connection all of the math and physics I was “learning” had to do with making things. My father ran a machine shop, so I knew what making things looked like. It usually didn’t involve a lot of calculus. In fact, I worked in industry as an engineer for twenty years without ever having to solve a single integral.

This doesn’t mean that I didn’t need to understand math and physics. On many occasions I approximated an integral using Riemann sums, because I understood the integration concept. However, the connection between my engineering studies and the shop floor certainly escaped me for my first couple of years in school. I know many talented young people who got frustrated with engineering and quit because they couldn’t see the relevance of the engineering curriculum. Their youthful passions “to build things” were quashed for a lack of clear and direct communication about what engineers do and how they complete their assigned duties.

As I think about the future of engineering education, it’s easy to get caught up in interesting conversations about college costs, classroom technologies, and alternative certification. However, the problem I need to focus on is that of curriculum relevance. What does an engineer need to know in order to go “make things?” How do you make that knowledge relevant to an eighteen year old student? What are the key points that every engineer should remember and understand a decade after graduation? All in all, I need to narrow my focus and concentrate on these issues.

Oh yeah, it wouldn’t hurt to get my dissertation finished, either.

Categories
Engineering Revision

Sorting Out the Lines of Thought

It is my hope that, by making frequent blog entries, I will slowly sort out the tangle of thoughts that go through my head each day. These ideas and notions are often related to the engineering profession or engineering curriculum—and they all seem tangentially related to one another in some way as they pass through my consciousness. Without stopping to write them down, however, all I retain is an emotional agitation that comes from knowing that things are changing, but not being sure what to do about it. It is somewhat akin, I must confess, to the way that I felt about my stock investments throughout most of last spring.

So, as a first pass, I see these issues as needing resolution to put my tiny brain at ease:

Role: Are engineers to continue as problem solvers, or should they (could they?) become advisers to society? In a Talk of the Nation interview on NPR, former marine biologist Randy Olson talks about why scientists need to involved in presenting their findings to the general public, and how they might do so effectively. It seems to me that as the world becomes more complex, we need engineers to speak up about the inevitable compromises that are part of any sufficiently robust system. The concept of relying on facts, rather than anecdotes, is only now starting to get due attention in management circles. Courtesy of Stanford professors Bob Sutton and Jeffrey Pfeffer, the notion of evidence-based management reached the readers of the Harvard Business Review in 2006. If not evidence, on just what have managers been basing their decisions up to now? Could engineers really do any better, or are they so lacking in charisma and social skills that they could barely stay afloat in the choppy waters of corporate politics?

Skills: Are the skills that students learn in college in any way related to the skills they need to be productive in society? It seems to me that engineering curriculum is too often subject to the tyranny of technique. Yes, students can calculate the maximum stress in a beam, but do they know what to do with the number they generate? They may be able to produce a Bode plot for a feedback system, but can they use that information to reduce system error? It is undoubtedly easier to teach and grade technique, but is this ultimately a disservice to students, and to society? Further, a majority of the engineers that I graduated with become project engineers, rather than designers or researchers. Would their classroom time not have been better spent learning more about project management, and less about the intricacies of partial differential equations? This is not to say that we could ever abandon mathematical rigor in the engineering sciences. However, with college costs climbing without bound, perhaps a more judicial use of students’ time and money is prudent; not every engineering student want to pursue an academic career. For those who want to proceed to grad school, the current arrangement may be fine. However, are the remaining students receiving an education that will allow them to acheive rapid proficiency throughout their working careers?

Education: Based on the roles and skills needed by engineers, it is possible to start addressing the education of engineering students. This topic is vast, and I might start by breaking it down into four subheadings:

  • Topics: What skills should we be teaching? More software programming? More interpersonal skills? More hardcore engineering?
  • Methods: By what method should we present these topics? Screencasts? Online lectures? One-on-one tutoring?
  • Style: How might the material be best presented to allow students to quickly comprehend key concepts?
  • Structure: What is the structure by which this education is best delivered? Are universities still the right venue for delivering an engineering education? Will new organizations, either ad-hoc or private enterprise, sprout up to deliver an education at a lower cost, and in less time?

I’ll try to work through these issues in future posts. If blogging fails to help me sort out these thoughts, then perhaps the “Preparing Future Faculty” program I enrolled in today will get me moving down the right path. By completing the course I am supposed to be able to:

  • Explore and reflect on my assumptions about academic roles, positions, practices, missions, and institutions.
  • Construct an institutional profile and relate my career goals and faculty skill sets with institutional missions and departmental goals.
  • Construct a career strategic plan for enhancing and maintaining faculty skill sets and competencies.
  • Develop a portfolio including curriculum vita, cover letter, research statement, and teaching philosophy.

Sounds like a good start to me!

Categories
Engineering Revision

Instructional Training

When I returned to school more than two decades after getting my master’s degree in mechanical engineering, it was with the intent of teaching at the university level. I had previously taught engineering technology classes, early in my career, at one of Purdue’s extension campuses, and I enjoyed the experience. But I had studied to be an practicing engineer, and I left academia to begin my industrial career soon after. Following twenty years in the private sector, though, I felt that I had accumulated enough useful insights to be of benefit to young engineering students. Teaching at the university level requires a doctorate, however; so, at an age that was twice the norm, I began work on my PhD.

As I wrap up my degree (hopefully defending yet this semester), I must admit to having nagging doubts about an academic career. Its not so much the hard work associated with beginning at the bottom of the academic ladder, or the drudgery of grading tests and homework, or even the murky waters of academic politics. Rather, as I will detail in future posts, I think that universities face some serious challenges in the near future. Further, I believe that much of the coming revolution in education will be driven by private enterprise, and not academic institutions. I would much prefer leading the change, rather than resisting it.

Granted, this may be making some unfair assumptions about today’s universities. I know that many schools are working hard to modernize their curriculum and instructional methods. And my experiences in higher education may not be typical. So I’ve decided to give the academic path one final look during the course of this semester. I’m signing up for the “Preparing Future Faculty” course being offered this semester. Perhaps, given further additional exposure to the academic system, I will feel more comfortable about making positive changes from within a university position. If not, well then I can say I gave it an honest evaluation.

In addition to the PFF course, I plan on attending a series of workshops given by Purdue’s Center for Instructional Excellence (CIE). I’m told by friends who have previously attended these seminars that the material is more suited for the humanities than for engineering coursework. However, I’ll try to report on the ideas and methods that seem the most appropriate for the engineering classroom.